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Rate INDUCED TiPPING

General framework:
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x is the state vector, u is a vector of parameters, \ is a
continuous function, r is the rate of the forcing
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Rate INDUCED TiPPING

General framework:
df
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x is the state vector, u is a vector of parameters, \ is a
continuous function, r is the rate of the forcing

For all values of ), there is a stable equilibrium x(\)
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Rate INDUCED TiPPING

For r € [0, r.), A changes slowly enough that if x(0) is within
some neighborhood of x(A(0)), then x(t) is within some other
neighborhood of X(A(rt)) for all ¢.
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Rate INDUCED TiPPING

For r € [0, r.), A changes slowly enough that if x(0) is within
some neighborhood of x(A(0)), then x(t) is within some other
neighborhood of X(A(rt)) for all ¢.

We call x(\(rt)) the quasi-stable equilibrium (QSE).

We say the state tracks the QSE for 0 < r < re.
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Rate INDUCED TiPPING

For r > r¢, x(t) no longer stays within the required
neighborhood of the QSE. The system “tips” and we say it has
rate-dependent tipping.

The neighborhood of the QSE that describes the tipping point
can be chosen in many ways: by a given distance R, by the state
leaving a basin of attraction of the QSE, by something else
topological in the system, or by some other arbitrary choice.
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RATE-INDUCED TIPPING EXAMPLE

dx
dt
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RATE-INDUCED TIPPING EXAMPLE

dx
-t A2 —
o = (AT -
o,
dt
Co-moving system: set w = x + A.

2
=W —ptr
it oot

Equilibrium at w = +\/pu —rifr < p.

Tipping condition: » > r. where

,u—()\o—i-X())z if —x0 <Ao< —X0+ 1L
T’C:
I if Ao < —xo
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FasT-SLow SysTEM

QSE near a locally folded critical manifold.

dx
ea—y+>\+x(x—1)

dy N

—_ = — n

=
n=1

N > 5, odd.
(0, —A) is globally asymptotically stable.
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FasT-SLow SysTEM

X
Eafy‘i_)\‘i‘x(x—].)

Y o
a pE
n=1
Set e = 0 to find the slow manifold: 0 =y + XA + x(x — 1)

SA) ={(x,y) ER?:y = -\ —x(x—1)}
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FasT-SLow SysTEM
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Fast SLow SysteEM: RaTe TipPING

dx
EE:y‘i_)\‘i‘x(x—l)
dy o,
=2

d\
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CRriTicAL MANIFOLD
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ProjecTED REDUCED SYSTEM

Set € = 0 and differentiate the resulting equation with respect to
t to find a system approximating the slow dynamics.

_dy d) dx
0 — ;i; _% ;1["% (2}:—— 1);1[
dx N " 1
E:(Zx —r)(2x—1)

n=1
dx

il
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DESINGULARIZED SYSTEM

Rescale time: % =—(2x-1)
N
dx "
4= (-2
X
2o r2x—1
dr r2x—1)

This reverses the direction of time on the repelling part of the
critical manifold.

ForO<r< Zln\’:l (1/2)", all trajectories within the attracting

part of the critical manifold converge to x* where r = Z;\Izl x*.
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CRITICAL RATE

re=3(1/2)"

n=1
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SOLUTIONS
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CO-MOVING SYSTEM

eg:y+)\+x(x—1)

dt
N
dy
=
n=1
a
ar

Create a co-moving system: w =y + A

dx
ea—w+x(x—1)
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CO-MOVING SYSTEM

The equilibrium (x*,w*) in the co-moving system is given by
the solution to
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HoPF BIFURCATION ANALYSIS

The Jacobian at this equilibrium is:

(2x; —1)/e 1/
N

Z —n(x)"t 0

n=1

and the eigenvalues of the Jacobian are

2xf — 1 /(1 - 26 — 4e SN (o)™

n=1
2¢
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HoPF BIFURCATION ANALYSIS

Eigenvalues:

207 — 1 /(1 - 202 — 4e XN ()"

n=1
2¢

When x* < 1/2, the equilibrium is stable, which is in agreement
with the previous conclusion that the system does not tip for
r< ZnNzl(l/Z)” = 1. As r increases, so does x*, so whenr =r,
and x* = 1/2 the pair of eigenvalues cross the imaginary axis,
and a Hopf bifurcation occurs.
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PERIODIC ORBITS IN CO-MOVING SYSTEM
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Periodic orbit expands rapidly as in a canard explosion.
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VAN DER PoL OscCILLATOR
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VAN DER PoL OscCILLATOR

dx x%
EE—Xz—i-(Xl—?)—‘r)\
dxp _
a0

a\

E—T’>0

a > 1is fixed, and a stable equilibrium exists at
(—o,—a+ % )
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PHASE PORTRAIT FOR \ = (.
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CO-MOVING VAN DER PoL SYSTEM

Setw = x; + A\
dxq xi’
6‘;2{* w %‘ (x1 — 7§*)
dw

— =X — r
dt Lot

This is the classic van der Pol system!
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CANARD PROGRESSION

As r increases beyond o — 1, there is a canard explosion.
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ORBITS IN ORIGINAL SYSTEM
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(QUESTIONS

Does spiraling behavior still count as “tracking”?
If so, is the critical rate for spiraling really a “tipping point”?

How do we prove this sprialing occurs when we can’t reduce to
a “co-moving system”?
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